"Image Classification Based on Sparse Representation in the Quaternion " by Long H. Ngo, Nikolay Metodiev Sirakov et al.
 

Publication Title

IEEE Access

Document Type

Article

Abstract/Description

In this study, we propose a novel sparse representation learning method in the Quaternion Wavelet (QW) domain for multi-class image classification. The proposed method takes advantages from: i) the QW decomposition, which promotes sparsity and provides structural information about the image data while allowing approximate shift-invariance, to extract meaningful features from low-frequency QW subbands, ii) the dimensionality reduction method using Principal Component Analysis (PCA) for reducing the complexity of the problem, and iii) the sparse representation of the generated QW features to efficiently learn and capture the meaningful and compact information of this data. After the QW decomposition, the features extracted from low-frequency image sub-bands information are projected, by the PCA, into a new feature space with lower dimensionality. The features extracted from the training samples are used to construct a dictionary, while the features of the test samples are sparsely coded for the classification step. The sparse coding problem is formulated in a QW Least Absolute Shrinkage and Selection Operator (QWLasso) model applying quaternion l1 minimization. A novel Quaternion Fast Iterative Shrinkage-Thresholding Algorithm (QFISTA) is developed to solve the QWLasso model. The experiments conducted on various public image datasets validated that the proposed method possesses higher accuracy, sparsity, and robustness in comparison with several contemporary methods in the field including Neural Networks.

Department

Mathematics

First Page

31548

Last Page

31560

DOI

10.1109/ACCESS.2022.3159701

Volume

10

ISSN

2169-3536

Date

3-25-2022

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 6
  • Usage
    • Downloads: 1
  • Captures
    • Readers: 4
see details

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.