Search for Type IA Supernova Progenitors in Open Star Clusters

Document Type


Degree Name

Master of Science (MS)


Physics and Astronomy

Date of Award

Fall 2013


Though Type Ia supernovae (henceforth SNae) are a primary tool in refining our understanding of cosmology and dark energy, controversies still abound regarding what the progenitors of these SNae are. The two main classes of possible Type Ia SN progenitors are: (1) the single-degenerate model, where a white dwarf (the remnant of a Sun-like star that has completed its life cycle) gravitationally accretes material from a close companion star, and (2) the double-degenerate model, involving the merger of two white dwarfs. In either case, the resulting SN explosion looks the same superficially. But some of the details of the SNae, perhaps including details critical to understanding dark energy, may depend sensitively on what the progenitors are. The goal of this thesis was to search for radial velocity variations in two candidate double degenerate systems. Firstly, I determined if either of these systems were bona fide double degenerates. I used the well-tested method of searching for radial velocity variations due to orbital motion as determined by changing Doppler shifts in their optical spectra. These data were obtained from time-series spectra of both candidate systems over several hours at the world's largest ground based optical telescope, the Keck Observatory in Hawaii. Secondly, I tested whether each confirmed binary system is of sufficient mass and sufficiently short orbital period to be progenitors of a future Type Ia SN. Binary white dwarfs that will merge to form Type IaSNae over a Hubble time have orbital periods less than six hours, which are easily detectable with these data. Type Ia SN progenitors must also have a mass near or above the Chandrasekhar limit of ~1.44 solar masses; the total mass of these systems can also be determined from our data. If one or both of these candidate systems had met both these criteria, the white dwarfs would have been the first definitive examples of the double degenerate class of Type Ia progenitors. This result, which we refer to as a positive result, would have been extremely important and highly impactful in astronomical research.


Kurtis Williams

Subject Categories

Astrophysics and Astronomy | Physical Sciences and Mathematics